A Method for Profiling Magnetic & Gravity Response of Metalliferous Ore Using Data from Mineralogic Mining®

James Strongman¹, Jake Harrison¹, Benjamin Tordoff²

¹Petrolab Ltd., ²Carl Zeiss Microscopy Ltd.

Petrolab Limited

- 20 years of consultancy to the mineral processing and mining industries
- Specialist in both mineralogical consultancy and commercial section preparation
- Team of innovative and forward thinking mineralogists, geologists and technicians
- Our core clients are mineral processers and mining consultants – We understand their questions and how to get the answers

Overview

Problem

Mineral Processing circuits deal with particles composed of multiple minerals with different chemical & physical properties

"Process particles not minerals"

Method

Using Mineralogic mining to map and profile a metallurgical test product and highlight key differences

Results

Profiles of the feed and resulting products reveal key data to guide and corroborate test work

Future

Focused analysis of the data sets reveals key physical and morphological data to improving recovery

Mineral Processing

- Mineral processors look to identify a distinct difference between target mineral and gangue.
- Four principle separation techniques
 - FlotationLeachingGravityMagneticChemicalPhysical

- Case study selected Gravity and Magnetic profiling of a tungsten Ore test product
- Study objective Asses and predict the feed and products response to gravity and magnetic separation

Gravity Separation

- Key physical separator - Density g/cm3

Typical density difference across a tungsten ore would be between 2.65 g/cm³ Quartz and Wolframite 7.3 g/cm³

Test program used a Holman 2000 shaking table, capable of splitting on a s.g difference of ~1 g/cm³

Wills et al 2011

Particles not Minerals

- Particle will respond with combined properties of the contained minerals

Gravity

Analysis Method

Optimisation of microscope conditions, acceleration voltage and brightness/ contrast;

Zeiss EVO MA 25 LaB6-SEM with 60mm² X-Flash^N detector 20KV pixel size 5 µm

- BSE Thresholding and Image analysis algorithms

Define and segregate particles

- Analysis High resolution BSE image of each particle and EDS data of each pixel

Process time 0.04s (~5,000 counts) per spectra

2k – 5k Particles - runtime 3 hours

Gravity Results

- Feed Profile

Gravity Results

Results Profiles

Magnetic Separation

- Key physical separator - Magnetic response

Typical magnetic response of minerals in a tungsten ore can be between Quartz and Magnetite

Test program used a Carpco HIM induced roll separator, which can split differences of magnetic susceptibility ~0.1(A)

Particles not Minerals

- Particle will respond with combined properties of the contained minerals

Gravity

- Electro-magnetic response

Magnetic Profile

Magnetic Results

Results

📴 - 🅎 - 💹 🚰 🚗 - 👺 🖺						
ParticleID	Mineral ID 4 -	Grain ID	EDS Classification : -	IAClassification	Area 1 =	Feret Max Diameter 2 7
36418	36058	36418	Cassterte	100 - 200	6702.38	118.19 µm
37529	36878	37529	Cassterte	50 - 100	2901.03	96.03 µm
38850	38283	38850	Cassterte	15 - 25	200.07	20.00 µm
38853	38285	38853	Cossterte	25 - 50	500.18	46.06 µm
38855	38285	38855	Casatorte	50 - 100	1700.60	96.03 µm
38964	38304	38964	Cassterte	50 - 100	1200.43	63.86 µm
38974	38304	38974	Cassterte	5 - 15	100.04	10.00 µm
38976	38304	38976	Cassterte	5 - 15	100.04	10.00 µm
38977	38304	38977	Cassterte	25 - 50	700.25	41.62 µm
38982	38304	38982	Casatorte	25 - 50	400 14	32.36 µm
38984	38304	38984	Casaterte	15 - 25	200.07	20.00 µm
38991	38304	38991	Cassterte	15 - 25	200.07	20.00 µm
41694	41579	41694	Cassterte	5 - 15	100.04	10.00 µm
42987	42897	42987	Cassterte	50 - 100	1500.53	80.72 µm

Summary

- Process particles not minerals, the combined properties of each particle must be considered when predicting how it will respond.
- Profile will show the key separation points and also overlaps.
- Mineralogic is not only provides fully quantitative EDS analysis, but also is based in an MSQL data structure allows detailed integration of the data.
- Study of the particles outside of the predicted response to lead to improved separation.
- Future
 - Routine analysis in operating plants to build trending data sets to optimize circuits against feed mineralogy/ore type.
 - Assignment of probability against particle parameters to build simulation models.
 - Development of the magnetic separation profile by incorporating the effect of density of non-magnetic phases on para-magnetics.

Thank you for your attention

Acknowledgements

Nigel Macdonald & David Goldburn - SGS Minerals UK

Robert Fitzpatrick – Cambourne School of Mines

for further information Please visit www.petrolab.co.uk

